Discrete logarithm problem

RootMe challenge: Discrete logarithm problem: What a pretty equation.

Alice and Bob use the Discrete Logarithm Problem in order to find securely a common session key. You have found Alice’s public key \((g, y, p)\), Now you have to find the private one x as : \(y = g^x \mod p\)

For information, \(p\) is a prime number of 522 bits length and \(g\) is a primitive root modulo \(p\).

For validating this challenge, you just have to input the value of x (also 522 bits wide).

p =

7863166752583943287208453249445887802885958578827520225154826621191353388988908983484279021978114049838254701703424499688950361788140197906625796305008451719

y =

6289736695712027841545587266292164172813699099085672937550442102159309081155467550411414088175729823598108452032137447608687929628597035278365152781494883808

g =

2862392356922936880157505726961027620297475166595443090826668842052108260396755078180089295033677131286733784955854335672518017968622162153227778875458650593